Online catalogue of Archimedean circles
Archimedean circles are circles in the arbelos, congruent to the Archimedean twin circles and with relevant additional properties.
Click on the hyperlinks to find more information!
Archimedean circles
- Archimedean circles 1a and 1b: The Archimedean twins

- Archimedean circle 2: Bankoff's triplet circle

- Archimedean circle 3: Bankoff's quadruplet circle

- Archimedean circle 4: Reflection of Bankoff's
quadruplet circle

- Archimedean circles 5a and 5b: The cousin circles

- Archimedean circle 6: The C-circle

- Archimedean circles 7a and 7b: The
2nd and 3rd rectangle circles

- Archimedean circle 8: The
4th rectangle circle

- Archimedean circle 9: The
Dearing circle

- Archimedean circles 10a and 10b: The Schoch twins

- Archimedean circle 11: The Schoch incircle

- Archimedean circle 12: The Schoch-Woo circle

- Archimedean circle 13: The first Schoch line circle

- Archimedean circle 14: The second Schoch line circle

- Archimedean circle 15: The Schoch segment circle

- Archimedean circle 16: The midpoint reflection of Bankoff's triplet circle

- Archimedean circle 17: The midpoint line reflection of Bankoff's triplet circle

- Archimedean circle 18: Fourth symmetry of Bankoff's triplet circle

- Archimedean circles 19a and 19b: The Schoch intersection point Circles

- Archimedean circles 20a and 20b: The lifted Cousin Circles

- Archimedean circle 21: The Schoch Tangent Circle

- Archimedean circle 22: The Yiu-Woo Circle

- Archimedean circle 23: The Yiu-Schoch Circle

- Archimedean circles 24a, 24b, 24c, 24d: The Power circles

- Archimedean circles 25a and 25b: The Midway semicircle circles

- Archimedean circle 26: The Yiu circle

- Archimedean circle 27: First reflection of the Triplet circle

- Archimedean circle 28: Second reflection of the Triplet circle

- Archimedean circles 29a and 29b: The first Radical line pair

- Archimedean circles 30a and 30b: The 2nd Radical line pair

- Archimedean circles 31a and 31b: The midarc circle pair

- Archimedean circles 32a and 32b: The MC circles

- Archimedean circles 33a and 33b: Brothers of the quadruplet circles

- Archimedean circles 34a and 34b: Older Twins

- Archimedean circle 35: The Schoch-Flower circle

- Archimedean circles 36a and 36b: The congruent inversion image circles

- Archimedean circles 37a and 37b: The
Schoch line tangent circles

- Archimedean circles 38a, 38b, 38c, 38d:
The CD-circle Powerian pairs

- Archimedean circles 39a, 39b, 39c, 39d:
The O' Powerian pairs

- Archimedean circles 40a, 40b, 40c, 40d: The Outside Powerian Pairs

- Archimedean circle 41: Reflection of Triplet circle through O'
- Archimedean circles 42a and 42b: QTB circles
- Archimedean circle 43: Reflection of (A16) through M
- Archimedean circles 44a and 44b: First QTB Powerian pair
- Archimedean circles 45a and 45b: Second QTB Powerian pair
- Archimedean circles 46a, 46b, 46c, 46d: The Common tangent quadruple

- Archimedean circles 47a and 47b: The eyeball pair
- Archimedean circle 48: External Okumura-Watanabe circle
- Archimedean circle 49: Orthogonal Okumura Watanabe circle
- Archimedean circles 50a and 50b: The 50th pair
- Archimedean circles 51a, 51b, 51c, 51d, 51e, 51f, 51g and 51h: The insquare octet
- Archimedean circles 52a, 52b, 52c, 52d: Cousins of the
Second QTB Powerian Pair

- Archimedean circles 53a and 53b:
Neighbourcouple of the Second QTB Powerian Pair
- Archimedean circles 54a and 54b:
The O-basal pair
- Archimedean circles 55a and 55b:
Outside basal pair
- Archimedean circle 56:
Inverse of O'-line in (CD)
- Archimedean circles 57a and 57b:
The Belev-pair
- Archimedean circles 58a and 58b:
The Bui chords circles
- Archimedean circles 59a and 59b:
First García pair
- Archimedean circles 60a and 60b:
Second García pair
- Archimedean circles 61a and 61b:
Dao pair
- Archimedean circle 62:
Sanchez-García triplet circle
References
- L. Bankoff, A Mere Coincidence, Mathematics Newsletter, Los Angeles City College, Nov. 1954; reprinted in Coll. Math. J., 23 (1992) 106.
- L. Bankoff, Are the Twin Circles of Archimedes Really Twins?, Math. Mag., 47 (1974) 214--218.
- D. Belev, A Generalization of the Classical Arbelos and the Archimedean Circles, Mathematics plus, volume 16 (64) (2008) 4:54--68.
- Q.T. Bui,
The Arbelos and Nine-Point Circles, Forum Geometricorum, 7 (2007) 115--120.
- E. Danneels and F.M. van Lamoen,
Midcircles and the Arbelos,
Forum Geometricorum, 7 (2007) 53--65.
- C.W. Dodge, T. Schoch, P.Y. Woo and P. Yiu, Those Ubiquitous Archimedean
Circles, Math. Mag., 72 (1999) 202--213. Download
- I. d'Ignazio and E. Suppa, Il Problema Geometrico, dal Compasso al Cabri,
Interlinea Editrice, Téramo, 2001.
- H. Okumura, Lamoenian Circles of the Collinear Arbelos, KoG, 17 (2013) 9--13.
- H. Okumura and M. Watanabe,
The Archimedean Circles of Schoch and Woo,
Forum Geometricorum, 4 (2004) 27--34.
- H. Okumura and M. Watanabe,
Characterizations of an Infinite Set of
Archimedean Circles,
Forum Geometricorum, 7 (2007) 121--123.
(a)
- H. Okumura and M. Watanabe,
Remarks on Woo's Archimedean Circles,
Forum Geometricorum, 7 (2007)
125-128. (b)
- F.M. van Lamoen,
Archimedean Adventures,
Forum Geometricorum, 6 (2006) 79--96.
- F.M. van Lamoen,
Some
Powerian pairs in the arbelos,
Forum
Geometricorum, 7 (2007) 111--113.
- F. Power,
Some More Archimedean Circles in the Arbelos,
Forum Geomectricorum, 5
(2005) 133--134.
- P. Yiu, The Archimedean Circles in the Shoemaker's Knife, lecture at the
annual meeting of the Florida Section of the Mathematical Association of
America, 1998.
- A. Wendijk, Problem 10895, Amer. Math. Monthly, solution by T.
Hermann, 110 (2003) 63--64.
Back to Floors wiskunde pagina.
(in Dutch)
Home.