Het punt van Fermat/Torricelli (F) kun je construeren door buiten op de zijden van driehoek ABC drie gelijkzijdige driehoeken te plakken. Verbind de naar buiten gerichte hoekpunten van deze gelijkzijdige driehoeken op een verstandige manier met A, B en C, en de drie punten komen samen in het punt F. Het wordt ook wel het eerste isogonale punt genoemd omdat (als de hoeken van ABC kleiner zijn dan 120 graden) hoeken AFB, BFC en CFA allen 120 graden zijn.
Hierdoor ontstaan zes gelijkvormige driehoeken binnen ABC: AKG, JBM, ILC, JKF, FLM en IFG. Zij vormen de basis voor de regelmatige zeshoek!
De regelmatige zeshoek wordt nu gevormd door de Fermat/Torricelli punten van de zes driehoeken te nemen!
Voor een uitgebreidere studie, lees
Bernard Gibert en Floor van Lamoen, The Parasix Configuration and Orthocorrespondence, Forum Geometricorum 3 (2003) 169-180.
Terug naar Floors wiskunde pagina.
Home.